Main Deep Learning: A Practical Introduction

Deep Learning: A Practical Introduction

, ,
4.0 / 5.0
0 comments
An engaging and accessible introduction to deep learning perfect for students and professionalsIn Deep Learning: A Practical Introduction, a team of distinguished researchers delivers a book complete with coverage of the theoretical and practical elements of deep learning. The book includes extensive examples, end-of-chapter exercises, homework, exam material, and a GitHub repository containing code and data for all provided examples. Combining contemporary deep learning theory with state-of-the-art tools, the chapters are structured to maximize accessibility for both beginning and intermediate students. The authors have included coverage of TensorFlow, Keras, and Pytorch. Readers will also find: Thorough introductions to deep learning and deep learning toolsComprehensive explorations of convolutional neural networks, including discussions of their elements, operation, training, and architecturesPractical discussions of recurrent neural networks and non-supervised approaches to deep learningFulsome treatments of generative adversarial networks as well as deep Bayesian neural networksPerfect for undergraduate and graduate students studying computer vision, computer science, artificial intelligence, and neural networks, Deep Learning: A Practical Introduction will also benefit practitioners and researchers in the fields of deep learning and machine learning in general.
Request Code : ZLIBIO4358731
Categories:
Year:
2024
Edition:
1
Publisher:
Wiley
Language:
English
Pages:
416
ISBN 10:
1119861861
ISBN 13:
9781119861867
ISBN:
1119861861,9781119861867

Comments of this book

There are no comments yet.