Main Algebraic and Computational Aspects of Real Tensor Ranks Edition: 1

Algebraic and Computational Aspects of Real Tensor Ranks Edition: 1

, ,
5.0 / 5.0
0 comments
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of [...]finding tensor ranks through simultaneous singular value decompositions. This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through simultaneous singular value decompositions
Request Code : ZLIB.IO17447499
Categories:
Year:
2022
Publisher:
Springer
Language:
English
ISBN 10:
4431554599
ISBN 13:
9784431554592
ISBN:
4431554580, 9784431554585, 9784431554592, 4431554599
Series:
SpringerBriefs in Statistics
This book is not available due to the complaint of the copyright holder.

Comments of this book

There are no comments yet.