Main Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow 2

Python и машинное обучение: машинное и глубокое обучение с использованием Python, scikit-learn и TensorFlow 2

,
5.0 / 5.0
0 comments
Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей. Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях. Основные темы книги • Фреймворки, модели и методики, которые позволяют машинам "учиться" на основе данных • Использование scikit-learn для машинного обучения и TensorFlow для глубокого обучения • Применение машинного обучения для классификации изображений, смыслового анализа, создания интеллектуальных веб-приложений и многого другого • Построение и обучение нейронных сетей, порождающих состязательных сетей и других моделей • Реализация веб-приложений с искусственным интеллектом • Выполнение очистки и подготовки данных для машинного обучения • Классификация изображений с использованием глубоких сверточных нейронных сетей • Рекомендуемые приемы для оценки и настройки моделей • Прогнозирование непрерывных целевых результатов с использованием регрессионного анализа • Обнаружение скрытых шаблонов и структуры в данных с помощью кластеризации • Углубление в текстовые данные и данные социальных сетей с применением смыслового анализа Прикладное машинное обучение с прочным теоретическим фундаментом. Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения. Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения. Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов. Все иллюстрации к книге в цветном варианте доступны по адресу go.dialektika.com/pythonml Об авторах Себастьян Рашка, автор ставшего бестселлером 2-го издания этой книги, обладает многолетним опытом написания кода на языке Python. Он проводил многочисленные семинары по практическому применению науки о данных, машинному обучению и глубокому обучению, включая руководство по машинному обучению на SciPy — ведущей конференции, посвященной научным расчетам с помощью Python. Несмотря на то что исследовательские проекты Себастьяна сосредоточены главным образом на решении задач в области вычислительной биологии, ему нравится писать и говорить на темы науки о данных, машинного обучения и языка Python в общем, и он стремится помочь людям разрабатывать решения, управляемые данными, без обязательного знания подоплеки машинного обучения. Недавно его работа и вклад были отмечены званием выдающегося аспиранта 2016–2017, а также наградой ACM Computing Reviews’ Best of 2016. В свободное время Себастьян любит участвовать в проектах с открытым кодом, а методы, которые он реализовал, теперь успешно используются в состязаниях по машинному обучению, таких как Kaggle. Вахид Мирджалили получил звание PhD в машиностроении, работая над новаторскими методами для крупномасштабных вычислительных эмуляций молекулярных структур. В настоящее время он сосредоточил свою научно-исследовательскую работу на приложениях машинного обучения в разнообразных проектах компьютерного зрения в отделении компьютерных наук и инженерии Университета штата Мичиган. Вахид избрал Python в качестве главного языка программирования, и на протяжении своей научно-исследовательской карьеры накопил громадный опыт в написании кода Python. Он преподавал программирование на Python инженерной группе в Университете штата Мичиган, что дало ему возможность помочь студентам понять разные структуры данных и разрабатывать эффективный код на Python. Наряду с тем, что обширные исследовательские интересы Вахида сконцентрированы на приложениях глубокого обучения и компьютерного зрения, он особенно интересуется использованием приемов глубокого обучения для усиления приватности в биометрических данных, таких как изображения лиц, чтобы не раскрывалась информация сверх той, что пользователи намеревались показывать. Кроме того, он также сотрудничает с командой инженеров, работающих над беспилотными автомобилями, где проектирует модели на основе нейронных сетей для слияния многоспектральных изображений с целью обнаружения пешеходов.
Request Code : ZLIBIO2813184
Categories:
Year:
2020
Edition:
3
Publisher:
ООО "Диалектика"
Language:
Russian
Pages:
848
ISBN 13:
9785907203570
ISBN:
9785907203570

Comments of this book

There are no comments yet.