Main Stochastic Analysis

Stochastic Analysis

5.0 / 5.0
0 comments
This book is intended for university seniors and graduate students majoring in probability theory or mathematical finance. In the first chapter, results in probability theory are reviewed. Then, it follows a discussion of discrete-time martingales, continuous time square integrable martingales (particularly, continuous martingales of continuous paths), stochastic integrations with respect to continuous local martingales, and stochastic differential equations driven by Brownian motions. In the final chapter, applications to mathematical finance are given. The preliminary knowledge needed by the reader is linear algebra and measure theory. Rigorous proofs are provided for theorems, propositions, and lemmas. In this book, the definition of conditional expectations is slightly different than what is usually found in other textbooks. For the Doob–Meyer decomposition theorem, only square integrable submartingales are considered, and only elementary facts of the square integrable functions are used in the proof. In stochastic differential equations, the Euler–Maruyama approximation is used mainly to prove the uniqueness of martingale problems and the smoothness of solutions of stochastic differential equations.
Request Code : ZLIBIO2811664
Categories:
Year:
2020
Publisher:
Springer
Language:
English
Pages:
218
ISBN 13:
9789811588631
ISBN:
9789811588631
Series:
Monographs in Mathematical Economics
This book is not available due to the complaint of the copyright holder.

Comments of this book

There are no comments yet.